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A head-on collision between two solitary waves from opposite directions in a Rayleigh-Bénard con-
vecting fluid is investigated by use of the Poincaré-Lighthill-Kuo method. The fluid system is bounded
below by an isothermic plane and above a free deformable surface on which a heat flux is fixed. The re-
sults show that, near the transition of the long-wavelength oscillatory instability, the solitary waves em-
erging from the collision can preserve their original identities to the second order. The phase shifts due

to the collision are calculated explicitly.
PACS number(s): 47.20.Ky, 47.35.+i

It is well known that the long-time asymptotic
behavior of two-dimensional unidirectional shallow water
waves in the case of weak nonlinearity is described by the
Korteweg—de Vries (KdV) equation [1]. Since the in-
verse scattering transform (IST) for exactly solving the
KdV equation was found by Gardner, Greene, Kruskal,
and Miura [2], the interesting features of the collision be-
tween solitary waves have been revealed: When two soli-
tary waves approach closely, they interact, exchange
their energies and positions with one another, and then
separate off, regaining their original wave forms.
Throughout the whole process of the collision, the soli-
tary waves are remarkably stable entities, preserving their
identities through interaction. The unique effect due to
the collision is their phase shifts [3]. It is believed that
this striking colliding property of solitary waves can only
be preserved in a conservative system.

In recent years, much attention has been paid to the
study of the convecting fluid whose first instability from
the static state is oscillatory. Examples include the
binary fluid convection [4], the electrohydrodynamic con-
vection in nematic liquid crystals [5], etc. A common
feature of these systems is that the transition occurs with
finite wave number and frequency. General arguments
[6], as well as asymptotic expansion in particular cases
[7], show that the nonlinear behavior near the transition
is governed by coupled Landau-Newell-type equations.
Traveling waves are governed by the Ginzberg-Landau
equations. Much work has been devoted to the study of
the solution to these equations and their comparison with
experimental results [8,9]. Recently, Benguria and
Depassier [10] investigated the oscillatory instability in
the Rayleigh-Bénard convecting fluid with a free surface.
A new type of oscillatory instability whose transition
occurs at vanishing wave number and frequency, i.e., a
long-wavelength oscillatory instability, was found. The
nonlinear evolution of the surface wave at the transition
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was shown to satisfy the KdV equation [11-13], which is
completely integrable. This is a quite remarkable result
because the Rayleigh-Bénard convecting fluid under
study is a thermally driven dissipative system. Naturally
one may ask: How about the collision between the soli-
tary waves in this nonconservative system? This paper
will give an answer.

According to the IST, all KdV solitary waves travel in
the same direction (under the boundary condition vanish-
ing at infinity) [2,3], so for the overtaking collision be-
tween solitary waves in the Rayleigh-Bénard convecting
fluid, one can use the IST to obtain the overtaking collid-
ing effect of the solitary waves. However, for the head-on
collision between two solitary waves, we must employ
some kind of asymptotic expansion to solve the original
Navier-Stokes equations [14]. Based on the work of Su
and Mirie [15], in this paper we shall use the Poincaré-
Lighthill-Kuo (PLK) method to investigate the head-on
collision between two solitary waves traveling in opposite
directions in the Rayleigh-Bénard convecting fluid.

Let us consider a layer of fluid that, at rest, lies be-
tween z =0 and d. Upon it acts a gravitational field
g= —gZ. The fluid is described by the Boussinesq equa-
tions [11],

V-v=0, (1)
P = —Vp+uTvtep @
ar _ o

ar «V-°T , 3)
p=poll—alT —T,)], 4)

where d /dt =9/0t +v-V is the convection derivative; p,
T, p, and v denote the pressure, temperature, density, and
fluid velocity, respectively. The fluid’s properties, that is,
its viscosity u, thermal diffusivity «, and coefficient of

R3830 ©1993 The American Physical Society



47 HEAD-ON COLLISION BETWEEN TWO SOLITARY WAVESIN ...

thermal expansion a, are constants. Furthermore, we re-
strict ourselves to two-dimensional motion, so that
v=(u,0,w).

The fluid is bounded above by a free surface in contact
with a passive gas, which exerts upon it a constant pres-
sure p,, and below a plane surface. As motion sets in, the
free surface is deformed; we shall write its position as

z =d +1(x,t). The boundary conditions on the upper
surface are [11]

ntun,=w, (5)
p—pa—u/NH)w, +u,n:—n,(u,+w,)]=0, (6)
w(1—2 ) u, +w, ) +2un, (w,—u,)=0, (7
a-VI'=—F/k , (8)

on z=d +n. Here N=(1+%2)"2 fi=(—n,,0,1)/N is
the unit normal to the free surface, F is the prescribed
normal heat flux, and k is the thermal conductivity.
Denoting by T, the fixed temperature of the lower sur-
face, the boundary conditions on the lower surface z =0
are

w=u,=0, T=T,. 9)

The static solution to these equations is given by

=—F(z—d)/k +Ty, p;=pol1+(aF/k)z—d)], and
p -—pa —gpol(z —d)+(aF /2k)(z —d)*]. We have chosen
the reference temperature T, as the value of the static
temperature on the upper surface. The temperature on
the lower surface is then T\, =T, + Fd /k. We shall adopt
d as the unit of length, d?/k as the unit of time, pod’ as
the unit of mass, and Fd /k as the unit of temperature.
Then there are three dimensionless parameters involved
in the problem, the Prandtl number o=pu/(pek), the
Rayleigh number R =pygaFd*/(kku), and the Galileo
number G =gd *p3/u>.

In order to study the head-on collision between two
solitary waves from opposite directions in this thermally
driven dissipative system, we use the PLK method [15].
We anticipate that the collision will result in post-
interaction phase changes of them. So we introduce the
following transformation of wave-framed coordinates
with phase functions:

r=e(x —ct)+edy(l,7)+ ¥ (r,L,7)+ -+, (10)

u2=h(r7l’7')_§(f1r+qll )PO(Z)+

=Gon,+ E%URC(f +¢)*—20(f,—qq)—

_c(frr+qll)

1 _
1,=-—(3,—9,) ! 2o fr— ’/’0r‘11)+ (ffr—aqq))+
c

4
+¥(flrr+qlll)_

69 (3,-3) " (f1,—

2
Z2—Py(2)+ R Py(2) |+0R ([,

G -
2@ =371y
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I=e(x +ct)+e¥o(r,7)+ (R, L, T)+ -+, (11)

r=éet (12)

where ¢; and ¢; (j=0,1,2, . ..) are to be determined in
the process of our perturbation solution of (l) 9).
introduce the asymptotlc expansxons u=e (u0+eu1

+eu2+ ), w=e(wy+ew, +€ w2+---), P—Ps
=epotep,+ep,+ 1), T— T—6(90+69 +€%0,
+ ), and n=€Xny+en,+€ M,+ -+ ). Then we can

proceed to solve each order in €.
To leading order [O(1) order] the asymptotic solutions
to (1)-(9) yield

ug=f(r,r)—q,7), wy=—

G 1
po=ET (s +a), 8=/, =2+,

where f =f(r,7) and g =q(l,7) are two functions to be
determined in the next orders. The definition of the func-
tions T;(z) and P;(z) (j=0,1,2,3,...) appearing in this
and the next orders (see below) have been given in the
Appendix. We must point out that the vanishing bound-
ary condition at infinity has been used (i.e., the fluid is
static when r2+12— ) in obtaining the above solution,
the same as in Refs. [11-13].
At order O (€), we find

(fr—ql)z ’

—q;)Ty(2),

u,=g(r,7), wi=—I(g,+g)z,
m=—--(3,~3) (g, +8),

Go 2

Pr=—20(f,—q)+ (ar_al)_l(gr+gl)

+0’R(f,_41)P1(Z) >
0,=—c(f,, +q)T(2)+(g, +8)To(2),

where g =g(r,l,7) is an undetermined function and
(8,—9,;)" ! is the inverse operator of (3, —9,;). The solu-
bility condiiion u,(1)= f (l)ulzzdz determines the critical

wave speed
c?=Go?. (13)

In the case of O(e*) order, the solubility condition
u,,(t)= f éuzlzdz determines the critical Rayleigh num-

ber R =R_.=30, i.e., the same as in Ref. [11]; and
g =f1(r,7)—gq,(l,7). The solution is
911 )P0(2)+(f,,-—q”)[_3P0(Z)+RCP2(Z)] »
—Z(ft+aqy)
—q”)Pl(z) ’

+ 2 (f, 44,0+, —3)h

17R,

+(frrr_ 1_3—15

~qun) qm)

[E—;
—
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where £ is an undetermined function and the expressions
for w, and 0, are omitted here.

At O(€®), the solubility condition u;,(1)= J éu 12242
yields the equations for ¢, ¥, f, and q as the following:

¢o(l,7)=xq(l,T), (14)
Yo (r,7)=xf(r,7), (15)
f7+}"1ffr+}"2.frrr=0 ’ (16)
—q,tAgq;tAq,;,=0, 17
where
1 30
=—— {17 1
X 4c Go |’ (18)
3(10+Go)
== 1
A’1 2G0' ’ ( 9)
)»ZZ%GUZ[%+%U] . (20)

From (14) and (15) we have the solution of the phase
J
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function at O (€?):

bo=[" q,ndr, y= [ fir,rar . @1
The evolution equations for f(r,7) and q (1,7) satisfy the
KdV equation, (16) and (17), respectively. Higher-order
corrections, which do not interest us here, determine evo-
lution equations for the functions g and 4. The single sol-
iton solutions of (16) and (17) are

172

f= A4 sech? ?21:2 (r—irnAr—¢,)
( right-running soliton) , (22)
MB |2
g =B sech? Tkz (I+3IABT—¢3)
(left-running soliton) ,  (23)

where 4, ¢ 4, B, and ¢ are integral constants. From
this we can calculate the phase changes due to their col-
lision as

124,B ' MmB |V
bo=X . tanh 12, (I+iMBr—¢p) | +1 (24)
124, 4 172 W 172 1
Yo=X % tanh 127, (r—=3AMAT—¢4) | —1¢. (25)
We finally obtain the expression of the surface wave up to O (€?) as follows:
=¢ 1 R R pe | |22 1/21+‘AB - +0(é 26)
n=¢€"{ A sech 12, (r—3AA7—¢ ) | +Bsec 127, (I+iABT—¢p) (€’), (
, [120,B 172 B 172 1
r=e(x —ct)+ey A tanh 12, (1+3ABr—¢p) | +1;, 27
L [122,4 172 A 172 1
[=€(x —ct)+ey " tanh 12, (r—sAA7—¢ ) |—1¢. (28)
The existence of undamped solitary waves in this dp=¢€lx +ct)|,-_ w, 1=0—€(x +et)|, = w, =0
thermally driven dissipative system is possibly due to the ”
fact that the energy released by buoyancy balances exact- | 12A,4 30
ly the amount of kinetic energy dissipated by viscosity. =2y . (30)

This can be shown as in Ref. [11].

Now from (26)—-(28) we can estimate the phase shifts in
the collision process of two solitons traveling in opposite
directions. Let us assume that the soliton f (denoted by
A) and the soliton g (denoted by B) are at a long distance
from each other at an initial instant (= — o ); i.e., soli-
ton Aisat/=—c and r =0, and B is at r = o and [/ =0.
After collision (¢ = ), A is far to the right of B;i.e., 4 is
at /= and r =0, and B is at r=— o and / =0. In this
case, the phase shifts of 4 and B, & ; and 8, are given by

S y=ex —ct)l,—g j—w—€x =), -0 j=—w

124,B '

=2¢? , (29)
1

In principle, higher-order effects due to collision can be
calculated further by using the above formulation.

In conclusion, we have investigated the head-on col-
lision between left-running and right-running solitary
waves in the Rayleigh-Bénard convecting fluid by using
the PLK method. The results show that the solitary
waves emerging from the collision preserve their original
identities to O (€?). The phase shifts due to the collision
have been calculated explicitly. It is remarkable that the
evolution of weak nonlinear surface waves near the tran-
sition in this thermally driven dissipative system is similar
to that of a conservative one.

We make note of the recent work by Weidman, Linde,
and Velarde [16], which gives considerable evidence of
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soliton behavior in both heat-transfer- and mass- T_,(z)=z, (A3)
transfer-driven Marangoni-Bénard convection flows. A .

constant phase shift is observed as a result of the head-on ~ J =0, 1,2;. ... From (A1)-(A3) we have

collision of two solitary waves traveling in opposite direc- 1,5

tions. A theoretical explanation for the results of this ex- To(2)= i(z —32), (Ad)
periment is needed. The study is still underway. 1

T,(z)=—(z°—10z%+25z2) , (A5)
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APPENDIX: THE FUNCTIONS T;(z) AND P;(z) 1
P (z)=-(z*—622+5), (A8)
The functions T(z) and P;(z) are defined by 4
z 1
Tj(z)=fozdzlfl 1dzsz_1(zz)=fozdzle(zl), (A1) Py(z)=—(z°—15z2*+75z*~61) (A9)
Pj(z)zflzdlej_l(zl), (A2)
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